29,231 research outputs found

    Accuracy of vertical deflection determination by present-day inertial instrumentation

    Get PDF
    An analysis of results obtained in the Canadian Rock Mountains indicates that the observation of deflection differences along the same line can be repeated with a precision of about 0.5 sec but that there are systematic discrepancies between the forward and the backward running of the same line. A comparison with the available astronomically determined deflections also shows systematic differences of 2 sec and 3 sec. These errors are most likely due to the overshooting of the Kalman procedure at gradient changes. It appears that the software can be altered in such a way that deflection differences between stations, not more than half an hour of travel time apart, can be determined by the inertial system with an accuracy of better than + or - 1 sec

    Multipole invariants and non-Gaussianity

    Full text link
    We propose a framework for separating the information contained in the CMB multipoles, aℓma_{\ell m}, into its algebraically independent components. Thus we cleanly separate information pertaining to the power spectrum, non-Gaussianity and preferred axis effects. The formalism builds upon the recently proposed multipole vectors (Copi, Huterer & Starkman 2003; Schwarz & al 2004; Katz & Weeks 2004), and we elucidate a few features regarding these vectors, namely their lack of statistical independence for a Gaussian random process. In a few cases we explicitly relate our proposed invariants to components of the nn-point correlation function (power spectrum, bispectrum). We find the invariants' distributions using a mixture of analytical and numerical methods. We also evaluate them for the co-added WMAP first year map

    The Multipole Vectors of WMAP, and their frames and invariants

    Full text link
    We investigate the Statistical Isotropy and Gaussianity of the CMB fluctuations, using a set of multipole vector functions capable of separating these two issues. In general a multipole is broken into a frame and 2ℓ−32\ell-3 ordered invariants. The multipole frame is found to be suitably sensitive to galactic cuts. We then apply our method to real WMAP datasets; a coadded masked map, the Internal Linear Combinations map, and Wiener filtered and cleaned maps. Taken as a whole, multipoles in the range ℓ=2−10\ell=2-10 or ℓ=2−20\ell=2-20 show consistency with statistical isotropy, as proved by the Kolmogorov test applied to the frame's Euler angles. This result in {\it not} inconsistent with previous claims for a preferred direction in the sky for ℓ=2,...5\ell=2,...5. The multipole invariants also show overall consistency with Gaussianity apart from a few anomalies of limited significance (98%), listed at the end of this paper.Comment: 9 pages. Submitted to MNRA

    On the Nature of the Binary Components of RX J0806.3+1527

    Get PDF
    We present imaging circular polarimetry and near-infrared photometry of the suspected ultra-short period white-dwarf binary RX J0806.3+1527 obtained with the ESO VLT and discuss the implications for a possible magnetic nature of the white dwarf accretor and the constraints derived for the nature of the donor star. Our V-filter data show marginally significant circular polarization with a modulation amplitude of ~0.5% typical for cyclotron emission from an accretion column in a magnetic field of order 10 MG and not compatible with a direct-impact accretor model. The optical to near-infrared flux distribution is well described by a single blackbody with temperature kT_bb = 35000 K and excludes a main-sequence stellar donor unless the binary is located several scale heights above the galactic disk population.Comment: 2 pages including 2 figures. To appear in RevMexAA(SC) Conference Series, Proc. of IAU Colloquium 194 `Compact Binaries in the Galaxy and Beyond', La Paz (Mexico), eds. G. Tovmassian & E. Sio

    A framework for modelling kinematic measurements in gravity field applications

    Get PDF
    To assess the resolution of the local gravity field from kinematic measurements, a state model for motion in the gravity field of the earth is formulated. The resulting set of equations can accommodate gravity gradients, specific force, acceleration, velocity and position as input data and can take into account approximation errors as well as sensor errors

    Template fitting and the large-angle CMB anomalies

    Full text link
    We investigate two possible explanations for the large-angle anomalies in the Cosmic Microwave Background (CMB): an intrinsically anisotropic model and an inhomogeneous model. We take as an example of the former a Bianchi model (which leaves a spiral pattern in the sky) and of the latter a background model that already contains a non-linear long-wavelength plane wave (leaving a stripy pattern in the sky). We make use of an adaptation of the ``template'' formalism, previously designed to detect galactic foregrounds, to recognize these patterns and produce confidence levels for their detection. The ``corrected'' maps, from which these patterns have been removed, are free of anomalies, in particular their quadrupole and octupole are not planar and their intensities not low. We stress that although the ``template'' detections are not found to be statistically significant they do correct statistically significant anomalies.Comment: 8 pages. MNRAS submitte

    Effects of weak self-interactions in a relativistic plasma on cosmological perturbations

    Full text link
    The exact solutions for linear cosmological perturbations which have been obtained for collisionless relativistic matter within thermal field theory are extended to a self-interacting case. The two-loop contributions of scalar λϕ4\lambda\phi^4 theory to the thermal graviton self-energy are evaluated, which give the O(λ)O(\lambda) corrections in the perturbation equations. The changes are found to be perturbative on scales comparable to or larger than the Hubble horizon, but the determination of the large-time damping behavior of subhorizon perturbations requires a resummation of thermally induced masses.Comment: 11 pages, REVTEX, 4 postscript figures included by epsf.sty - expanded version (more details on the resummation of thermal masses which is required for the late-time damping behaviour

    Neuropilin-mediated neural crest cell guidance is essential to organise sensory neurons into segmented dorsal root ganglia

    Get PDF
    The peripheral nervous system (PNS) of higher vertebrates is segmented to align the spinal nerve roots with the vertebrae. This co-patterning is set up during embryogenesis, when vertebrae develop from the sclerotome layer of the metameric somites, and PNS neurons and glia differentiate from neural crest cells (NCCs) that preferentially migrate into the anterior sclerotome halves. Previous analyses of mice deficient in the class 3 semaphorin (SEMA3) receptors neuropilin (NRP) 1 or 2 raised the possibility that each controlled a distinct aspect of trunk NCC migration. We now demonstrate that both pathways act sequentially in distinct NCC subpopulations and thereby cooperate to enforce segmental NCC migration. Specifically, SEMA3A/NRP1 signalling first directs one population of NCCs from the intersomitic path into the sclerotome, and SEMA3F/NRP2 signalling acts subsequently to restrict a second population to the anterior half of the sclerotome. NCC exclusion from either the posterior sclerotome or the intersomitic boundary is sufficient to enforce the separation of neighbouring NCC streams and the segregation of sensory NCC progeny into metameric dorsal root ganglia (DRG). By contrast, the combined loss of both guidance pathways leads to ectopic invasion of the intersomitic furrows and posterior sclerotome halves, disrupting metameric NCC streaming and DRG segmentation

    Domain walls and chaos in the disordered SOS model

    Get PDF
    Domain walls, optimal droplets and disorder chaos at zero temperature are studied numerically for the solid-on-solid model on a random substrate. It is shown that the ensemble of random curves represented by the domain walls obeys Schramm's left passage formula with kappa=4 whereas their fractal dimension is d_s=1.25, and therefore is NOT described by "Stochastic-Loewner-Evolution" (SLE). Optimal droplets with a lateral size between L and 2L have the same fractal dimension as domain walls but an energy that saturates at a value of order O(1) for L->infinity such that arbitrarily large excitations exist which cost only a small amount of energy. Finally it is demonstrated that the sensitivity of the ground state to small changes of order delta in the disorder is subtle: beyond a cross-over length scale L_delta ~ 1/delta the correlations of the perturbed ground state with the unperturbed ground state, rescaled by the roughness, are suppressed and approach zero logarithmically.Comment: 23 pages, 11 figure
    • 

    corecore